深度学习是什么?和人工智能的区别
深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构,通过组合低层特征形成更加抽象的高层属性或类别特征,从而对数据进行表征。简单来说机器学习是实现人工智能的方法,深度学习是实现机器学习的技术。最近中公教育在出这个课程学习,他们课程和中科院自动化研究所合作的,这个也是中公老师给我朋友说的,我正好跟我朋友在一起也有所了解,你要是有这方面的兴趣可以去中公教育IT的官网了解,我朋友之前在哪里学的,他们教学质量还是可以保障的。
什么是深度学习:
深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:
(1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)。
(2)基于多层神经元的自编码神经网络,包括自编码( Auto encoder)以及近年来受到广泛关注的稀疏编码两类( Sparse Coding)。
(3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。
通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation learning)。
深度学习和人工智能的关系
深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
深度学习:现年模式Ai人工智能人工智能领域研究报告深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法: (1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)。 (2)基于多层神经元的自编码神经网络,包括自编码( Auto encoder)以及近年来受到广泛关注的稀疏编码两类( Sparse Coding)。 (3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。 通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation learning)。深度学习和人工智能的关系深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。